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ABSTRACT

The sequence notation suggested in +44- provides a tool
for the clear and precise specification of systolic computa-
tions. Namely, it separates the static and dynamic levels
of the specification. At the static level, the topology of
the network and the function of each cell are described by a
system of causal equations on sequences, and at the dynamic
level, the data flow is described by the elements of the
individual sequences.

94n this paper, we describefa method for the transforma-
tion of a given algorithm into a system of causal sequence
equations/input-output description which specifies a sys-
tolic computation. The basic idea of the method is to pack
arrays of variables along one or more dimensions into
sequences. Doing this, however, may result in a system of
equations that is not causal, and hence, a transformation of
indices in the original algorithm may be essential in order
to guarantee causality (the positive increment of time). ;

The derivation of index transformations from the data
dependence vectors of an algorithm was discussed in the
literature. However, data dependence vectors do not carry
any information about absolute values of the indices, and
hence, allow only the derivation of linear transformations.
In order to overcome this problem, we suggest a method for
the derivation of the index transformation from
(used,defined> pairs. These pairs retain information about
the absolute values of the indices, and thus allow for non
linear transformations.

Although the model of [14] allows arbitrary intercon.-
nections in systolic networks, our design technique is res-
tricted to the class of networks in which the interconnec-
tion pattern may be non-linear only along specific direc-
tions. Ring-like networks are elements Anetmiorc lass.
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.1. TNTRODUCTION

In the past few years, many formal techniques have been sug-

gested for the design of VLSI computations, in general, and of

systolic computations, in particular. These techniques include

the systematic mapping of .wavefront-like computations into

hardware (e.g. [5,7]), the derivation of alternative systolic

networks from a given, provably correct, design (e.g. [8,9,10]),

and the reindexing of the variables in a given algorithm such

that the dependence between the variables suit VLSI implementa-

tion. This latter technique was first suggested by Kuhn [6],

K$ and later studied carefully by Moldovan et al. [16], Miranker et

al. [15], and Quinton et al [17]. Cappello et al. [1] also con-

ceived this reindexing from a geometric point of view and Ipsen

et al. [3] extended the idea to include the data dependence

between coupled systems. Other techniques was also suggested for

the search of an optimal systolic network in a restricted class

of networks [11], and for the mapping of an acyclic program graph

into a linear array [18].

Of the above techniques, reindexing seems to be the most

promising and general one for mapping a given computation into a

systolic implementation. It is described briefly as follows:

First, the computation is written in the form of an algorithm

consisting of nested loops or recurrence formulas. Each variable

in the algorithm should be an element of an n+l dimensional

array, for some n - 3, and hence may be associated with a posi-

. tion in an n+l dimensional space that we call here the "computa-
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tion space". In this space, the "Dependence Vector" of a data

item may be defined as the vector joining the positions at which

the item is defined and used. One of the dimensions in the com-

putation space is chosen to represent the "Time", and a specific

. space transformation is derived such that all the dependence vec-

tors are mapped into new vectors that have positive components

along the time dimension. The interconnection pattern of a net-

work that may implement the given computation, and the speed of

the data movement in the network are then determined by the com-

ponents of the transformed dependence vectors.

The derivation of the space transformation from the depen-

dence vector excludes any transformation that depends on the

absolute position of the data in the computation space (called

nonlinear transformations in [16]). In order to overcome this

deficiency, Chen [2] suggested a technique in which the space

transformation is accomplished through a point by point mapping.

In addition, the Chen technique carries along the entire algo-

rithm (first order recursive equations) during the design pro.-

cess, yielding a precise and complete specification of the sys-

tolic computation. This is a clear advantage over the previous

reindexing techniques, where the specification of each cell and

the description of the input have to be sought separately through

a repeated application of the linear transformation to different

points in the computation space.

In this paper, we present a technique that is based on the

formal model of [14). It is a reindexing technique in which the
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space transformation is derived from <defined,used> pairs of the

data items instead of the dependence vectors. This allows

transformations that are position dependent (non linear) and yet ."

avoids the point by point mapping of the space.

As in [2], our technique carries along the entire descrip-

tion of the computation during the design process. More specifi-

cally, given a canonical algorithm, where each data item is asso-

ciated with a position in the computation space, the data items

along the "time" dimension(s) are compacted into data sequences.

A sequence transformation is then applied to enforce "causality",

a condition that ensures the positive increment of time. The
resulting system of causal equations specifies precisely the

topology of the network, as well as the operation of each cell

and the description of the appropriate inputs.

The formal model [14] that supports our technique does not

put any restriction on the topology of systolic networks. This

allows the derivation of a wide range of systolic computations

that may not be derived by any technique that imposes the condi-

tion of local communications at the algorithmic level (e.g. [2]).

For example, the shortest path multistage network, derived in

Section 6, may only be implemented on a network with global feed

back. That is a ring-like architecture

Another advantage of the technique presented in this paper

is the natural translation of multi-time dimensions into multis-

tage networks. For example, if two dimensions of the design

space are associated with time, then data items along these two

e• * °,.;::::* d , - N.- : .- * -.. * .,.--. .-. .. :-. .- - * '" - .,-- . -' . . ..--..... .... . . . ..... . .... . . ... ,.- -.. . . ..... ". ."....,..,".. . .".
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dimensions may be easily packed into data sequences. The result-

* ing system of equations then describes a multistage network where

a coarse clock determines the beginning and end of each phase,

- and a fine clocks determines the cycles within each phase.

In the next section, we introduce systems of Causal Canoni-

cal Sequence equations CCS, and we show that any CCS specifies a

systolic computation. In the following three sections, we

describe the different steps involved in the transformation of a

given algorithm into a CCS. These steps are illustrated by an

example of a computation for the solution of banded, triangular

linear systems. The multistage network derived in Section 6

shows the capability of the technique to handle multi-time dimen-

sions and global feed-back loops, and the dynamic programming

network of Section 7 is an example where non-linear sequence

transformation may be applied.

'I"
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.2. Clanonic Systems jp CrIaal Egnations

A systolic network is defined in [14) to be a network of

cells (computational and 1/0) where each communication link is I
unidirectional and each computational cell repeats indefinitely

the execution of a specific cycle of the form: 1) Read data from

the input links, 2) perform a specific computation, and 3) write

the results on the output links. The initiation of the cycles in

the different cells is synchronized by a global clock.

(I> With this definition, any computation on a given systolic

network N may be precisely specified as follows:

n n1) Assign to each cell in N a unique label I e I ,where I is

the set of n-tuples of integers. If N is a linear or a twoI

dimensional array, then the usual choice of n is 1 and 2, respec-

tively.

2) Identify each link in N by a pair <y,f> (written as y,) whereI

I is the label of the cell at which the link terminates and y is

a color assigned to the link. The only restriction on link

colors is that links terminating at the same cell should have

different colors. In this paper, links that are directed from a

cell to itself will be allowed. This type of direct feed back may

be used to store information from one cycle to the next, and thus

models an internal register in the cell.

3) Associate with each link y, a data sequence V, ( is the greek

letter corresponding to y). The it element of n ~ namely 7(i),

is the data item that appears on y, at the beginning of cycle i.

law1A special item 8'is used to indicate a "don't know" or a

A .- -1- A 1- t
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"don't care" element.

4) For each computational cell v in N, specify the operation of v

)by a set Evthat contains one sequence equation for each output

link of v. More specifically, if y u is an output link of v, then

include in Ean equation of the formq

vu

where a,1 b c r .. are input links to v, and ruis a causal

sequence operator that specifies, for any time t, the output item

7) (t) in terms of the previous input items a (T), 46 (Tr),...,Iiu V V
T < t. Many sequence operators are defined in [12) and [14]. In

the appendix, we define the few operators that will be used in

the examples of this paper.

5) Specify the elements of the sequences associated with the z~

input links of the network (the output links of input cells).

K6) Identify the output data items.

The system of equations obtained in 4, in addition to the

input and output specifications described in 5 and 6, respec-

tively, specify completely the systolic computation. It may be

easily seen that this system of equations/input-output specifica-

tions satisfies the following conditions:

V CSl: Each sequence in the system is indexed by a label I ce

for a fixed n. Moreover, all the sequences that appear in

* the right side of any specific equation are indexed by the

* same label. (v in equation (1)).

CS2: The system is well defined and consistent. In other words,
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any sequence that appears in the system is defined exactly

once, either in the input specification or as the left side

of a sequence equation.

Definition 1: An equation of the form (1), and the associated

operator rV are called causal if, for any t, t!-l, n (t) does not

depend on any element a v(T), 8 (T), ..., for some T - t. 03

Definition 2: A system of equations/input-output specifications

is called canonic if it satisfies the above two conditions. If,

in addition, each sequence equation in the system is causal, then

the system is called a causal canonic system, denoted from now on

by CCS. 03

Proposition 1: Any CCS specifies a systolic computation.

Proof: We will obtain the systolic computation specified by the

given CCS by constructing the underlying systolic network N as

follows:

Let L be the set that contains all the indices of the sequences

that appear in the CCS and construct for each index v e L a cell

labeled v. Partition the equations in CCS into mutually

exclusive sets of equations, where each set E contains the equa-

tions whose right side sequences are indexed by the index v.

Now, consider each set Ev; By CSI, each equation in Ev has the

form (1). For each such equation, construct a link directed from

cell v to cell u. Finally, for each sequence n specified in the

input specification part of the CCS, construct an input cell and

a link directed from that cell to cell i. The label of the input

cell may be assigned arbitrarily.
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Given the topology of N, the operation of each cell v in N

is then described by the equations in E V. Condition CS2 guaran-

tees that the input to each cell is an output of a cell in N

* (possibly an input cell), and that the output of each cell is

* uniquely defined. 03

Examplm: Let A=(a. ;i=l,...n, j=i-m,...,i) be a band lower tri-
1,)

angular matrix, and let the vectors b{b.i;il....n) and

* x={x.;i=l,...,n) satisfy Ax~b (Bee ALGi in Sec. 3). Consider the

f ol lowing CCS:

INPUJT( . n- o e/i j=l,...,m+1 flm+l n 0m~ 18m+l ;l

where for t=l,...,n,

jy ta~ -m m+i(t) =bt, and t(t) 0 1

nl[~ + V.*C jl..m (2.a) M
j+l j ) J

c-l no n~~ ~ j~l,.. .,m (2.b)

0j j+

OUJTPUJT[ x. C (m-'-+2i) ;i=l,...,n )

For the above CCS we have L-l..m , E. ( equ's

(2.a/b) )for i~,.,, and E -q 2c hm+l {eu (.) I h

corresponding network is shown in Fig. 1, where input/output

cells are omitted. Note that the terms n 0l n in (2.b/c) indi-- U

cate that the first j elements on the link z should be forced

to zero. This is important because it saves the values on the x

links from destruction due to operations involving don't cares.

By (2.a/b), cells 1,...,m are multiply/add cells and cell m+l is

a subtract/divide cell. By the definition of vYJ, the elements of

~7
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stthe (j-m-l) sub diagonal of A are supplied on the link c.

starting at time j+l and separated from each other by one time

unit. The inputs on bm+1 and xI , as well as the outputs on xm ,

are also specified precisely in the CCS. 0

CM+ Im Cm- IC

b .

Fig. 1 - A network for forward substitution.

Hence, by Proposition 1, the task of designing a systolic

computation for a given algorithm is reduced to that of deriving

a CCS equivalent to the algorithm. This derivation may be accom-

plished by first transforming the algorithm into a canonic form,

then rewriting the canonic algorithm in the form of a canonic

system of sequence equations/input-output specifications. If the

system is not causal, then a sequence transformation may be

applied to enforce causality and obtain a CCS that specifies a

systolic computation. If more than one sequence transformation

is possible, then, the one that reduces the execution time of the

computation should be identified and chosen. In the next three

, sections, we explain each of the above steps in details.

€.

* -.. fi

-. . . .. . . . . .b .
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.a. Canonic algoZi±.bma

Kuhn (6], defines a naive algorithm as one that is written

without regard to possible VLSI implementations. In order to

design a systolic computation for a naive algorithm, we start by

rewriting the algorithm in a caninic form:

Definition 3: A canonic algorithm is composed of an input state-

ment (equivalent to a read statement), a body, and an output

statement (equivalent to a write statement). The body of the

algorithm is constructed from arbitrary nested DO loops that

enclose assignment, or conditional assignment statements, where

the latter is of the form "IF predicate THEN assignment". The

following conditions should also be satisfied:

CAl: Each variable is an element of an n+l-dimensional array for

some fixed n, n 1 I, and each assignment statement is exe-

cuted in the context of n+I nested loops. Moreover, if S is

an assignment statement that is executed at some instance

i,. ..,in+ of the n+l loop indices, then each variable in -'n+I
the right side of S should be the (i I. n+1) t h entry of

an array.

CA2: The value of each variable should be defined exactly once

before it is used (via either an input statement or an

assignment statement).

CA3: If S is an assignment statement that is executed at some

instance ii,...i n+I of the n+l loop indices, and the vari-

able in the left side of S is the (Ji' '" JntL) t h  entry of

I.



an array, then each ik may depend only on 'k (possibly non II
linearly).

CA4: The predicate in a conditional assignment statement depends I
on the values of the loop indices and not on the values of

the variables.

The n+l loop indices define an (n+l)-dimensional space that I
we call the computation space. Accordingly, we may establish a

one to one correspondence between the coordinates of the computa-

tion space and the dimensions of the arrays used in the canonic

algorithm. More specifically, we associate with each

th(l''.'Jn+l) entry of an array, the position (Jl'''''Jn+l) in 3
the computation space.

Algorithm transformations that satisfy conditions similar to

CA1 and CA2 are called 'pipelining variable' in (16] , 'buffering

variables' in [6] and 'massaging recursion variables' in (2].

Condition CA3 allows nonlinearity in the data dependence of the

algorithm only along each dimension of the computation space.

However, CA3 is less restrictive than the constant data depen-

dence assumed in [16], and the first order recursion restriction '

of [2]. Finally, CA4 excludes from our design technique any net-

work in which the operation of a specific cell depends on the

value of its input. The design of this type of networks requires

the definition of data dependent sequence operators, which we

will not pursue in this paper. L

As an example, consider the following algorithm for the
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solution of the linear system A x b, where A {~ a )' is an flxf

*lower triangular, banded matrix, with band-width m+l, and

b -(b. is an n-dimensional vector. In order to avoid ioopJ
3.3

bounds of the form max(1,i-ml, we assume that a. 0 for i~m,

j=i-m,...,0.

ALGl: Naive forward substitution.

INPUT( x.i 0, -m,.n
a.b1~, . ,n ~ - . .

DO i=l,n

(DO j-l,m4

X. -x. + a.
I i~il-j-m-l i+j-m-l

x.i (b.i -x) a. .

OUTPUT{ x1 , i1l,...,n A

First, we rewrite the algorithm such that each statement is

nested within two loops, and each variable is an element. in a two

-~ dimensional array.

2 a(i,j) = a 'j b(i,m+l) b., i-=l,...,n,jim,.1);

DO izl,n

DO j-l,m+].J

(IF j~m THEN x(i,j+l) -x(i,j) + a(i,i+j-m-l) x(i+j-m-lm+2);

IF j=m+l THEN x(i,m+2) (b(i,j) -x(i,j) )/a(i,i))

Now, in order to satisfy CAL we define the new variables



-13-

c(i,j) a(i,i+j-m-1) and z(i,j) x(i+j-m-1,m+2). The first

substitution is trivial, however, the second is an expansion of

the column (x(k,m+2) ; k-l-m,...,n) into a two dimensional array

z. Because the indices i and j are added in x(i+j-m--l,m+2),

then, with the appropriate initial assignment, z may be expanded

by using either z(i-1,j-Il) =z(i,j) or z(i+l,j-l) - z(i,j). it

may be shown that the first expansion leads to an algorithm where

data are used before they are defined, thus violating CA2.

Hence, we pursue the second expansion which is sketched in Fig 2.

More precisely

z(l,j) =x(j-m,m+2) l,.m
z~i*,m) = x(i,m+2)

z(i+l,j-l) z(i,j) i=l,...,n, j-1,...,m

I-rn

J--A

1 2 0

2 2

41,

Fig 2 -expansion of a vector into a matrix

The incorporation of this expansion into the above algorithm

b gives the following:
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ALG2: Canonic forward substitution.

INPUT( z(1,j)'=O, j'1,...,m x(i1l)=O, i-ul,...,n;r

DO i-1,n

DO j-1,m+1

(IF j m THEN {x(i<j+1) -x(i,j) + c(i,j) z(i)

Z~i~lj-1) ~i'j

IF j m+1 THEN z(i+1,m) (b(i,j) -x(i,j) )Ic(i,j));

* QOUTPUT( x. ~+,) i=1,...,n )

m,
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A. The derxat.in f canonic 1&q11en= .ua.ion.

Conditions CAl and CA3 of canonic algorithms establish a one

to one correspondence between the loop indices (i.,...,in) and

the dimensions of the arrays used in the algorithm. In other

words, a given loop index ik , may be used in the algorithm to

select elements of arrays only along the kth dimension. Hence,

we may chose one loop index to represent the time, and project

the variable arrays along the corresponding dimension by packing

each n+l dimensional array into an n dimensional sequence array.

This transforms an algorithm which satisfies CAl and CA2 into a

system of sequence equations which satisfies CSI and CS2. That is

a canonic system of sequence equations.

i For example, if we chose i to represent the 'time' in ALG2,

then we may define the sequences i, ci, j, and 8m+ as follows

f x(i,j), C(i) =z(i,j)

)= c(i,j), Om+l(i) = b(i,m+l)

and rewrite ALG2 in the following form:

INPUT( C.(1) = 0, j=l,..,m, ; l(i) = 0, i=l,...,n ;

'Yj(i) - ai~~~ _ i=l,...,n ,j=l,...,m+l (3.a)

Om+l( i) = i  i-l,...,n (3.b)

D) i-l,n

DO j-lm+l

IF j m THEN j+ 1 (i) = j(i) + [7.(i) * CM(i)]

cjl(i+l) j(i) }
IF j = m+l THEN Cm(i+l) = [8(i) - 4.(i)] / I .(i) )

m-J-
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OUTPUT{ x = Cm (i+l) , i21,...,n ).

1.g

The above algorithm uniquely defines those elements of

V 'j, C. and 'm+l' that are used in the algorithm. However, by

CA2, any element of a sequence that is not defined in the algo-

rithm is not used, and hence may be set to the don't care element

6 or assigned an arbitrary value. For example, Cj, j=l,...,m-l,

are defined by -() 
= 0 and Cj-l(i+l) -C(i), i=l,...,n. Given

that C3i(i+1) is not defined in the algorithm for i > m, we may

compact the definitions of Cj-1 (i) in the form of the sequence

equation C- l - 0 Cj Repeating this for all the sequences

gives the following canonic system of sequence equations:

INPUT{ L L, where L(t)=O for any t ;

yj, j=l,...,m+l and am+1 , as in (3.a/b) ) ;

fj+l = j + vj * j=l,...,m (4.a)

C.-i = no C , (4.b)

C = n [ R C )/Pj ] j=m+l (4.c)

OUTPUT( xi = Cm (i+l) , i =l,...,n ).

The conditional assignment statements in ALG2 does depend on

j, and hence the resulting system of equations contains different

equations for different values of j. On the other hand, if the

conditional assignment statement in the canonic algorithm depends

on the index chosen to represent the 'time' then the multiplexing

operator has to be used in order to express the algorithm in

~....*

* ~ - . -~ -
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sequence form. For example, if the index j in ALG2 is chosen to

represent the 'time', and the sequences i, Ci' v. and 2., are

defined for i=l,...,n by

=t(j) x(i,j), el(j) z(i,j)

7i(j) c(i,j) (5.a)

b(i,m+l) if j=l

18 ( j ) = Iif (5.b)

Then, from ALG2, C.4- (j-l) is equal to C (j) if j m and to

(8(j)-fi(j)]/vi(j), if j=m+l. Adding to this C.+l(J-l)=-b for

j>m+l (not defined by the algorithm), we get

CC= MJ , -fi/ , 6) I
l Similarly, we may define ti and derive the following canonic

system of equations in which the sequence 6 is defined by 4.'

8 (t)=8 for any t- l:

INPUT{ 77 = L ; vi and Bi., i=l,...,n, as in (5.a/b) }

* 4-
- n M"' (4.+[i*i 1 6) i=l,...,n (6.a)

i 0- ' t- "
.(C ii [18 -f ]/,Yi a i l,. ,n (6.b) "

OUTPUT( x. C (i) mi)l. n }.-VSi+l~m ,,..., ...

The main difference between an algorithm and a system of

sequence equations is that some order of evaluation is imposed in

the algorithm, while no order is imposed on the evaluation of the

elements of the sequences in a system of sequence equations.

However, when a CCS is evaluated in a systolic network, the order

Z-,'1 L--XZ7C°.-

.,., , ., .. .. .. . - :% . . . ... . . , . . . .. 4 - . . . . . . . . ,. . . .
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of evaluation is such that the tth elements of all the sequences

in the system are evaluated simultaneously, and the evaluation

proceeds in the order t=l,2,.... We call this order an element-

wise evaluation.

Given that variables in a canonic algorithm cannot be

overwritten (see CA2), it is clear that the order of evaluation

imposed by the algorithm is only important because it guarantees

that each variable is defined before it is used. Clearly, this

property is preserved in the element-wise evaluation of the

equivalent system of sequence equations only if the system is

causal.

;.L

.4-
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Consider the sequence equation

S Pa(i),b(j) = r(, ' ,

where r is a sequence operator and a(i) and b(j) are functions of

i and j, respectively. The more general form of (7) may involve

n dimensional sequence arrays. However, for simplicity, we res-

trict our discussion to the case n=2. The extension to higher

dimensions should be obvious.

Definition 4: The causality factor *(t) of equation (7) at any t

is defined as the minimum integer such that pa(i) ,b()(t) does

not depend on any a. .(T), 6. (7),..., for T > t-O(t). The

minimum causality factor m of equation (1) is defined by

m= min(O(t); ttl). Clearly, if (7) is causal, then 0m>0. C

Any data item in (7) may be associated with a position in a

3-dimensional computation space. For example Pa(i)b(J)( t ) is

associated with the position (t,a(i),b(j)). Moreover, if O(t) is

the deficiency factor of (7) at t, then only data items associ-

ated with the positions (T,i,j), T = l,...,t- (t) may be used to

define p ) (t). This motivates the following definitions:

Definition 5: The dependence pair of equation (7) at any t!l is a

. pair of vectors <v,u), where v = (t,a(i),b(j)) and u

(t-O(t),i,j). The minimum dependence pair of (7) is the pair

<v,um), where um = (t-0m'iFj). 0

Definition 6: The difference vector of equation (7) at any tl is

4..- .4 ..
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the vector v-u =((t),a(i)-i,b(j)-j). The minimum difference

vector of (7) is the vector v-um  (0ma(i)-ib(j)-j). Q

Note that any non linearity in the difference vector along

the t dimension is absorbed in the minimum difference vector by

assuming the worst case. Note also that the first component of

the difference vector is equal to the deficiency factor.

If equation (7) is not causal, then the first component of

the minimum difference vector is not positive. However, it may

be possible to enforce causality by the application of some

sequence transformation to (7). We consider two types of

transformations. Namely

Sequence spreading: A spread of equation (7) by a constant s,

• s>0, is a substitution of each sequence o in (7) (here

*. o = p,4,,.) by another sequence a = e8 o .

Sequence skewing: A skew of equation (7) by a function w(i,j) is

a substitution of each sequence aij in (7) (a = p,a,R,...) by

another sequence a a.--S,,J*

Theorem 1: Let 0m be the minimum deficiency factor of equation

(7). If the following equation

Pa(i),b(j) = F(a i j  , li,j,.... (8)

is obtained by first spreading (7) by s and then skewing it by

w(i,j), that is by the substitution of

- , w(a(i),b(j)) 8s
a(i),b(j) Pa(i),b(j).

% .%
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then, the minimum deficiency factor of equation (8) is given by

m= (s+l)0 + w(a(i),b(j)) - w(i,j). (9)

Proof: By the definitions of the operators 8 and n, if

" a ,= nW(ij) es Gi'j' then ai ,j (t) = a 'j ((s+l)t-s+w(i,j)).

That is the above transformation maps the position (t,i,j) in the

computation space into the position ((s+l)t-s+w(i,j), i, j) in

-the same space. Hence, the minimum dependence pair of equation

(8) is <v, ur>, where
m

= ((s+l)t-s+w(a(i),b(j)), a(i), b(j))
um = ((s+l)(t-Om)-s+w(i,j), i, j)

From which we directly find that the first component of the

minimum difference vector, and thus the minimum deficiency factor

are given by (9). 0

For the special case of linear transformation, we may prove

the following result by direct substitution in (9).

Corollary: In Theorem 1, let a(i)-i+a (i) and b(j)-j+b (j), and
0 0

let w(i,j) = cIi + c2j be a linear function, then the minimum

deficiency factor of equation (8) is given by

Om = (s+l)0m + cI a0 (i) + c2 b0 (). 0

Now, given a non causal system of n canonic sequence equa-

thtions, let the minimum dependence pair of the k equation in the

system be:

<(t, i+ak(i), j+bk(j)) , (t-I, i, j)> k . n

k 35j) (t ' j))
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where not all #k' k=l,...,n are positive. In order to transform

the given system into a causal system, we first attempt to find a

constant s and a linear function w(i,j)=c1 i + c2 j such that :i

I02 a(IM b( 10 (s+1)' > (10)02 a 2(i) b 2 () c1 0
- C2

n n n

where the relation > is applied element-wise. If this is possi-

ble, then, we have found a linear sequence transformation that

will transform our system into a CCS. On the other hand, if

equation (10) does not have a solution, then we should seek a non

linear function w(i,j) such that

(s+ )0 + w(a(i),b(j)) - w(i,j) > 0 for k - ],...,n (.11)

In many cases, there may be more than one constant s and one

function w(i,j) which satisfy (10) or (11). In such cases, we

may choose s and w to minimize the execution time of the network.

Definition 7: Given any system of sequence equations/input-output

specifications, let S be the set that contains the positions (in

the computation space) of the data items in the output specifica-

tion part of the system. If a spread by s followed by a skew by

w(i,j) transform the given system into a CCS, then each position

in S is mapped into a new position. Let S0 contain these new

positions. The execution time T of the systolic computation
e

corresponding to the CCS is then defined by

T max{ t ; (t,i,j) c S )  (12)max[ (s+l)t-s+w(ij); (tci]) C SO).(t, j) S } °

::: 0

::::-: :;:-;_;,.:: -J: " ;:i:,,:- . ."-:. -. ..:.;i: . .- . . . . . . . . . . .. .... :::- ... .. . .- :-:...... ....- :-. . .-:- -
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Hence, the optimal choice of s and w(i,j) is the one that minim--

izes T.

For example, consider the system of equations (4). The com-

putation space for this system is two dimensional and the minimum

- dependence pairs for its equations are

<(t j+l) , (t j)> for j-l,...,m
<(t , j-1) , (t-1 j)> for j--l,...,m
<(t , j-l) , (t-i , j)> for j-=m+l

which shows that the system is not causal. Hence, we look for a

constant s and a linear function w(j) c2j such that

0 1 s+l]

and Te max{(s+l)(t+l)-s+c2J ; j=m, t=l...,n) (s+l)n+mc+l is

minimum, -which in this case means the smallest s and c2 .

- Clearly, s=l and c2 =i satisfy the above conditions, and hence, we

use the linear transformation

(13.a)
-- -nm+l

.= nj e v. ; '3m+l e B (13.b)

More specifically, if we multiply both sides of (4.a), (4.b)
and (4.c) by n j+l e, nJ-1 and nm8, respectively, and use pro-

perty P1 from the Appendix, we may get

n n j e [ + + vj*.], j-],...,m (.14.a)

3 - n0 C j--,...,m (14.b)

0 jl

Cj--i nJ- no n e [[a.- ]/'j], j zm+1 (14.c)-1 -no . j- i J

*,*-.-- - -- -I.
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Next, we replace 01 - 1 in (14.b/c) by n and insert n-J nJ

in the same equations, and finally use the definitions (13) to

* obtain the CCS (2) that was introduced in Section 2. In general,

it is safe to replace a don't care by a specific value for the

sake of simplifying the expressions. However, the converse is

not true. In other words we are not allowed to replace a

*? specific value, which may be defined in the original algorithm,

by a don't care. This is why we could not simplify (14.b/c) by

changing 0 0 into nl.

The system (6) of Section 4 provides another example of a

• -non causal system. Its dependence pairs are <(t,i),(t-l,i)> and

<(t,i+l),(t+l,i)> and the output set S = {(m,i+l) ; i--l,...,n).

For this system, a linear transformation with s=O and w(i)=2i is

optimal. Hence, we let

- i
°1 0

2i an 12( i+ )
and multiply (6.a) and (6.b) by 0  and ,i0 respectively.

Then we use property 2 form the appendix to obtain the following

CCS:

=- - 2i - 2i
INPUT. ; - vo ; -- ,o  *

where Y. and /3, i=:l,...,n, are as in (5.a/b) };
iI

~i no 2ii-l,(O] ~i+(i*~]

Ci+I n 0 2i+l,[O] ( Ci ' [4i-4j]/,Yi ) i-zl,...,n

OUTPUT( x (m+2i+2), i-l,...n )}.
i i+l ,- ,-L

This CCS specifies the network of Figure 3 which has n

'."
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computational cells. Each cell i starts, at time 2i+l, the compu-

tation of the value of xi in an internal register. The content

. of this register is described by the sequence associated with

the feed back link x.. After m+l time units, the cell terminates

its computation and the computed value of x. is passed to the
I

following cells i+l,...,n, on the output link yi+I"

b b 2 xX- 2n '

"-

11 2 2 n

1 2 "n I

Fig 3 A forward substitution network with n computational cells.

%9
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6. Example .1: A multia±aa shortest path network

Consider an S stage graph where each stage s, O s - S con-

sists of n5 nodes, with n = 1. For each edge directed from

a node j, 1 A j -n s, in stage s-i to a node i, I A i - n in

stage s, we are given a cost as ,. and the problem is to find the

minimum cost of a path from the initial node (node 1 in stage 0)
-Ni

to the terminal node (node 1 in stage S).

In order to solve the problem, we let

max(n s  s=O,...,S), and we assume that a. . if there is

no path from node j in stage s-i to node i in stage s, or if

n n 1 ( j A m and/or n < i d m. That is if either of the two

nodes does not exist.

In the following algorithm, the solution proceeds by finding

at each stage s and for each node i in s the minimum cost Cs of a

path from the initial node to node i. Each C8 is computed pro-

*. gressively in y(i,j,s). (We denote min(x,y) by x@y).

INPUT{ y(i,m+,O) = 0, i=l,...,m
, ~~a(i,3,s) = a s  j l . .ms .. S } ;,

DO s-l,S

DO i-l,m

DO j-l,m

{ IF j-=l THEN y(i,j+l,s) = y(j,m+l,s-1) * a(i,j,s);

IF j>I THEN y(i,j+i,s) = y(i,j,s) @ y(j,m+is-i) * a(i,js));

SOUTPUT( C1  y(1,m+1,S) 1.
'o.

.. - . . .
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Although each variable in the above algorithm is an element

of a three dimensional array, the algorithm does violate CAl of

canonic algorithms. Namely, y(j,m+l,s-l) is not an (i,j,s)th

element of an array. Hence, we let y(j,m+l,s-l) = x(i,j,s), and

use the expansion

x(l,j,s+l) = y(j,m+l,s) x(i+l,j,s) x(i,j,s)

This gives the following algorithm:

... NPUT{ x(l,j,l) =0, j=l,...,m ;

a(i,i s) =a s  i j= , .. ,.m, s=l,...,S } ;
' i'j'' ""

DO s-l,S

DO i=l,m

DO j=l,m

{ x(i+l,j,s) - x(ij,s)

IF j 1 THEN y(i,j+l,s) x(i,j,s) + a(i,j,s)

IF l<j<m THEN y(i,j+l,s) = y(i,j,s) @ (x(i,j,s) + a(i,j,s))

IF j = m THEN x(l,i,s+l) = y(i,j,s) @ (x(i,j,s) + a(i,j,s))};

SOUTPUT( C1 - x(I,1,S+l) ).

This algorithm, however, violates condition CA3 because, for

j -m, the index i is used to select an element of the x array

along the second dimension, which is associated with the index

j. In order to overcome this problem, we may use the y and x

arrays, alternatively, to accumulate the partial costs at succes--

sive stages. More specifically, we rewrite the algorithm in the

following canonic form:

• a.
. . . . . . . . . . . . . V - a a
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*INPUT{ x(l,j,1) =0, l'-M

S

DO s=1,S

( P (s = odd) THEN

DO i=lm

DO j-l,m

{X(i+1,j,s) - x(i'j's);

IF j-d THEN y(i,j+1,s) x(i,j,s) + a(i,j,s);

IF 1(<(m THEN y(i,j+1,s) =y(i,j,s) @ (x(i,j,s) + a(i,j,s));

IF j=m THEN y(i,1,s+1) y(i,j,s) @ (x(i,j,s) + a(i,j,s)) 1

IF (s = even) THEN

DO j=l,m

DO i-l,m

*IF i-l THEN x(i+1,j,s) y(i,j,s) + b(i,j,s);

IF 1<m THEN x(i+1,j,s) ;x(i,j,s) @ (y(i,j,s) + b(i,,js));

IF i~ni THEN x(l,j,s+l) x(i,j,s) @ (y(i~j>s) + b(i,j,s))

SOUTPUJT( C1  IF S is odd THEN y(l,l,S+l) ELSE x(l,l,S+l) I

Now, we may chose both i and s to represent the time and

compress the arrays along these dimensions. More specifically, we

first compress the arrays along the i dimension by defining the

sequences

f *' ' )j 1 .. ' , s- , .,
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S

Vj ) b(i,j,s) j=l,...,m, s-2 ,...

and then compress the sequences 7j, and y., s=l,...,S along

the s dimension by defining the sequences

m s
S = I ,S ( i' j=l, ... m

mSS=IS( 7j. ) j=l,...,m -

ms=,S ( -j . (15.b)

Note that the elements of the sequences n for s =odd are

not defined by the canonic algorithm. These elements, however,

are not used in the algorithm, and hence may be set to the don't

care element 8. With this, the two step compression leads to the

following canonic system of of sequence equations:

INPUT( v., j=l,...,m, as given by (15))

= no  Mil' -l j , ) j+,Yj @,7 @ j+-Y I j=] ... ,m (16.a)

7 1  Mm'm j+ 7' j7-.I (16.b)

7)~ -Mm'M( 71@[4 +0Y ] 77 j---2,...,m-1 (16.c)" ,.,

7- t (6, nM77@[nmj + 0 v.] ) j=m (16.d)

OUTPUT( C1 = IF S is odd THEN n,(mS+l) ELSE J1 (mS+l) }.

The system (16) is not causal. More specifically, its equa-

tions have the following dependence pairs:

<( t j t-i, j )> (~ ., 17.a)".

• , . ,,
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<( t , j+l ) , ( t , j )> j=l (17.b)
<( t , j+l ) ,(t , )> j=2,...,m-i (17.c)

<( t , j-m+l ) , ( t-m , j )> j=m (37.d)

In order to enforce causality via a linear sequence

transformation, we must find two constants p and c2 , such that

0 1 [.00

-m+ 1 lol

and Te = (p+l)(mS+l)-p+c2 is minimum. Clearly, p=0  and c2  1

satisfy the above conditions. That is causality may be enforced

in (16) via the following substitutions:

= ; = n ' ; . = It j j=l,...,m (]8)

More specifically, we first multiply (16.a) by OJ, (16.b/c)

by 03+l and (16.d) by n. Then, we use property P2 from the Appen-

dix to interchange the n and M operators, and finally, we use

(18) to obtain the following CCS:

INPUT{ . = jl j, =l,...,m );

nj  no n~-j- --
ii o" +l (43 'j , ( @ +77 ) j=l - .,m  (19.a)

,,.......,

77 W n 'm-' ("1  ,7.7 j (19.b)

- = M * -.... . "
nI W + l(  77@[j+ j , Vf +-) jz.2,...,m-l (19.c)

j 1 . 1+ 1 1
77, = n 0"l'( * 7, ,@[P j+4j]) j --m (39.d) ,"

The above CCS describes a linear network of m cells (see Fig

4), where each cell j contains an accpmulator (call it X.) whose-J

:01

I - II llll
-

=l]lldlrlllli~l l l -,',b~q~l, , l l l llla%1,d1; l'l .J '- ': -,-, - . :., <" "-" -" " -'o-, -" " " -" - .. , . o - . , ,- " " '
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xx z xm
X m

Fig 4 - A multistage, shortest path network

content is described by .. The operation of each cell j alter-

nates between two phases; In an odd phase, C. is stored in X. and
S.

the cell contributes in the computation of C. , il,.,m, where

each C. is computed progressively on the y links by picking up

contributions from the different cells. In the next phase, the

s+1computed C. I  il,...,m, circulate unchanged on the y linksI '

s+2while cell j computes C. in its accumulator. The precise3

operation of each cell is given by (19).

Note that the term OJn0n-3 in equation (19.a) indicates that

the content of the accumulator at cell j is reset to zero at the

th
j+l cycle. In order to simplify this equation, we may reset

the accumulator to zero at the first cycle and maintain this zero

for the first j+l cycles. This is equivalent to the replacement

of (19.a) in the CCS (19) by

= n Mmlm7 ++( (19.e)

A network very similar to the one described in this section

is given in (19].
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_. EXAMEI- 2: An-twk .or dami ur mmin.

Consider the following optimal parenthesization problem [4): "

Given c1. , i=l,...,n, find c where

. ~ .i .+. = rain{ f(ci~~_ ikij k E =I . j (20)

for j=l,...,n-l, i=l,...,n-j and a given function f.

The order at which the minimum is evaluated over the set of

indices K = {l,...,j) is not specified by the problem. The sim-

plest order is the sequential order k=l,...,j. It is possible to

write an algorithm using this order and then apply our technique

to derive an equivalent systolic computation. The resulting net-

work, however, does not overlap the computation of ci i+j for

2different j, and hence has an execution time T = O(n2).
e

An alternative order for the evaluation of (20) is to start

from the middle of the interval [1,j], namely from I = (j+l) " 2,

and proceed towards the boundaries of [l,j] in the two directions

*: 1-k and 1+k, k=l,2,..., simultaneously. This is described, more

precisely, by the algorithm shown in Fig 5, where x@y denotes

min{x,y), and x-y denotes the quotient of x/y.

The algorithm of Fig 5 is not canonic. However, it may be

rewritten in the canonic form shown in Fig 6 by using the follow-

* ing substitutions along with the appropriate expansions:

! hk

m(i,j,k) -h

7.(i,j,k) -- c. w(i j,k) ci+3 2 +~~i, i+(j32)+k-i '

' ;, ' -"" 2. "i 2 2 
". € . ' . ¢ .l w " , ' . . : . . ' , "

, i" J I" ... "."2 " J" 'e."4"." " . .,"g e. -" . ,*....", *,"4' ,..,.. . "'.* .•.".:.*"." "",".- . .o .



INPUT{ c. =,.,

U Do j=1,n-1

DO i=1,n-jU
DO k-1, 1 +1 /* I is the quotient of (j+1)-.2

(IF (j =odd) THEN

(IF kc 1 THEN h fk itf~. ,c

IF 1(koL THEN h~~~ h~,~ ~ ~ -
ilij i, ij f~c~~fc.cifk~~~

@f i,i+f+k-2 'itklij

IF k-1+1 THEN c, 1  h.k
ili~j ,i+j

I F (j =even) THEN

1,1i+) i,i+f-Ic Jifk~~
@ ~i,i+t+k-1 ' i+f+k,i+j)

IF 1(kic9 THEN hkl+ h- ~ ~ ~~- ci -~~)

f(c.i,i+f+k-1 c~~~~

IF k-1+1- THEN c i 1i~ h. Il~

OUTPUJT[ c ,n h 1 ,n where L n 2

Fig. 5 -An algorithm for dynamic programminlg.
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INPUJT( z(i,1,1) =c , y(i,1,1) c +,l il..n-

DO j-l,n-].I

DO i=1.n-j

DO k=l, t +1

(IF (j = odd) THEN

{IF k =1 THEN (x(i,j+1k) z(i,j,k) ;w(i-1,j+1,k) y(i,j,k)

m(i,j,Jctl) =f(z(i,j,k) , y(i,j,k)) )

IF 1(k't THEN ( x(i,j+1,k) = x(i,j,k) ; w(i-1.j+1,k) w(i,j,k)

z(i,j+1,k-1) =z(i~j,k) ; y(i-1,j+1,k-1) =y(i,j,k)

m(i,j,Jc+1) =rn(i,j,k) @ f(x(i,j,k),y(i,j,k))

@ f(z(i,j,k),w(i,j,k)) 1

IF k-1+1 THEN (z(i,j+1.k-1)=m(i,j,k) ;y(i-1,j+1,k-1)-nn(i,j,k)};

IF (j =even) THEN i

(IF kc 1 THEN ( x(i,j+1,k+1)=x(i,j,k) ;w(i-1,j+1,k+1)-nv(i,j,k)

z(i,j+l,k) =z(i,j,k) ; y(i-1,j+1,k) = y(i,j,k)

rn(i,j,k+1) = f(x(i,j,k),y(i,j,k)) @ f(z(i,j,k),w(i,j,k))}; t

IF 1<k't THEN 4

x(i,j+1,k+1)=x(i,j,k); w(i-1,j+1,k+1)=w(i,j,c)

z(i,j+1,k) =z(i,j,k) ; y(i-1,j+1,k) y(i,j,k);

m(i,j,k+1) =m(i,j,k) @ f(x(i,j,k),y(i,j,k))

@ f(z(i,j,c) ,w(i,j,k) )) ;

IF kc-1+1 THEN 41z(i,j+1,k) m(ij,k) ;y(i-1,j+1,k) ni(i,j,k)};

1;A

*OUJTPUT( c ~ rn(1,n-1,L+1), where L n+*2

Fig 6 -A canonic algorithm for dynamic programming.
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x(i,j,k) c ii+k ; y(i,jk) c i+tk+1 i+3'

Next, we chose k to represent the time and we define the

sequences L and wi, to contain the elements

of the arrays m, x, y, z and w, respectively, along the k dimen-

sion. We also define the element-wise sequence operator 0 such

that [,(,f)](t) - f(j(t) , n(t)). With this, we may compact the

canonic algorithm along the kth dimension and obtain the follow-

ing canonic system of sequence equations:

* INPUT{ i (1)=c. . , 7, (1.) = Cili...,n-l;

S(t)-7ji,(t)=, t>l, i

FOR j=l,...,n-i and i=l. ..,n-j

fi Ml'ln(A(,' ) 'i,j@l*i,j if j is odd

* if j is even (2 2 ): , , Opiij , 'L ' ) '
": where 1=(j+i) 2 and j  = (ti'j,'7i'j)@0(Cij i3

1 (ij 'i,j ' if j is odd
f: j l itif j is even (2 3 )

*

( , ( ° 6) ifjisod
M (77 ij - ij if j is odd

- Ci ' A ij 'if j is odd

C j-1'+ im M'l'- (Ci'j I /i' j  if j iseen(5

-- 7 *l 4M (jif j is even (26 )

OUTPUT( c A (I.+l), where L n+2
l,n 1,n-1;I
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The dependence pairs for equations (22), (23) and (24) are,

respectively,

<(t i 3) (t-i i 9)> l2
< , ,- , 'l , , o .j)>

The dependence pairs for equations (25) are<(t , i , +i)> (t l i ,9 ) > j=1,3,....(7 a
<(t , i- , j+l) , ( , i , j)> j 12, ... (2 .b

..

and, the dependence pairs of equations (26) are
<(t , i-l, 9 + )> , (t+l , i , j)> j=1,3,.... (28.a).-"
<(t , i l , j+l)> , (t , i , j)> j=2,4,.... (28.b)

As indicated by the dependence pairs, all the equations in

the system are not causal. However, by applying Corollary ]. of

Section 5, we may check that a linear skew of the equations with

n f transforms the system into a causal one that has an execution

time T e 2n+L-l, where L~n-2.~e

An interesting remark is that, in the absence of the pairs

(27.a) and (28.a), a skew of the form n9 is sufficient to enforce

causality. In other words, the factor of two is only needed for

the case 'j-odd'. For this reason we may try to apply a non

linear skew of the form n , where

qj(j) (3j-l)- 2 - 1 if j is odd

I q 2 (j )  3j'2 - 1 if j is even

The application of Theorem 1 indicates that a skew of the

system (22)-(26) with q(j) will enforce causality. For example,

the pairs (28.a/b) are mapped to
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<(t+q 2 (j+l) , i-i , j+l) , (t+l+q (j) , i , j)) j--l,3 ....

<(t+ql(j+l) , i-I , j+l) , (t+q 2 (1) 1 , j)> j-2,4 ....

from which we find that the minimum deficiency factors of equa-

tions (26), after transformation, are q2 (j+l)-q,(j)---i, and

ql(j+l) -q2 (J)=l, for j=odd and j=even, respectively. Similarly,

we can show that the minimum deficiency factors of the other

equations are all equal to unity. The execution time of the

transformed system is given by Te = L+l+q(n-l) = 2n-2.

Hence, a substitution of the form

0. = nq(j) 0.= IL c or 77

in the system (22)-(26) gives the following CCS:

. INPUT{ i, = , 7 i=1, .... n-1,

where C, and 7i are as in (21) 1;

FOR j=l,...,n-i and i=l,...,n-j

-_ _ ql(j)+l ji,'j ' icj i,j @ ' 0 ) if j is odd

t . MI,-I,-- * if j is even

where 1=(j+1)72 and . . (i',7.'ij)@0(C. *j'.i.)

"2M l-- ,
S2 .l(j)+l( i,j t,'j i

~~i~~l ,3 (. .~. . 6 ~if iis odd
"i- . if j is even"'2_., ' n ti,

02 .I,1-l,-.-

ql()+1 1,3 ' 'i j 6 if j is odd
i-1,j+1 Oo. if j is even

qlj)+2i f j is odd
•j n -1I 'cc - -- 6 if j is even

q2(j)+l(i,J ' i

". A. . .. . . . . . . . . . . . .. ." . .. . . .'. . ". . ". . . . . . . . . " .""" "- "
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-- =N  q1(j)+2 "i,j Ai, , if j is odd

71 i-l,j+l n M, 6l ' - (7) if j is even
q2(j)+li'j ,i j

OUTPUT( cm ,n = ",n-i( 2 n - 2 ) 1

The above CCS specifies the network shown in Fig 7.a, which

was first introduced by Kung and Guibas in [4]. The structure of

each cell may be directly derived from the operators in the

causal equations. As an example, we show in Fig 7.b the internal

details of a cell (i,j), j=even. Note that the circuits for the

outputs on z i,j+l and wi-l,j+ 1 are similar to those for Yi-I,j+'-

and x respectively, and, hence, are not shown in the fig-

ure.

Xj.J+l j.,J+l

1,5 --,~

WiJ
1.4 2 4 -- iJxj zij

1,3. 2,33.

2. 31

Fig 7.a - A systolic network for linear programmrini

[: -



q 1

Fig 7.b -The details of a cell (i,j), j=even.

IZ
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Co ncuding remarks

The sequence model introduced in [14] for the verification

of systolic computations is applied in this paper to the sys-

tematic design of such computations. Given an algorithm for the

solution of a specific problem, the first step in the design

technique is the transformation of the algorithm into a canonic

form. Then, the algorithm is rewritten as a system of sequence

equations and finally, a sequence transformation is used to

enforce causality and produce a complete specification of a net-

work which executes the original algorithm.

The technique is applicable to self-timed computations as

well as systolic computations. More specifically, it was shown

in [13] that self timed networks may be specified by systems of

weakly causal equations, where the minimum deficiency factor

of each equation is non-negative rather than positive. Hence, in

the last step of our technique, a sequence transformation that

enforces only weak causality should produce the specification of

a self-timed computation.

The order of associating operands to operator in the origi-

nal algorithm is crucial and may lead to different systolic com-

putations that solve the same problem. For example, in the

dynamic programming algorithm of Section 7, different networks

may be obtained by considering diff- nt orders for the evalua-

tion of equ (20) over the set of indices K-{I,...,j}. Also, in

ALGI of Section 2, if the order of the summation is reversed,

m
that is x x ii+Jm. i+._ml is replaced by x.

.j7
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1 m
=m ai,i+--m-l ill-rn- a i4-k Xi-k' then the resulting algo-

rithm does not have any systolic realization. In order to over-

come this problem, it is essential to find a suitable notation to

express generic algorithms, namely algorithms in which the orders

of evaluation of the operations are not specified, and then to

introduce a design technique which derives the order that leads

to the optimal design.

Finally, we should note that the sequence transformations

used in this paper are time independent. More specifically, we

used transformations of the form a -=w(i,j )Osa where s is

a constant. A more general transformation may be obtained by

assuming that s=s(t) is a function of time, that is the elements

of the sequences are spread non uniformly. However, we did not

find any example where this time dependent spreading is useful

and hence we have chosen to simplify our notation by keeping s

constant.
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Appndix

In this appendix, we define the sequence operators that are

used in the paper and we introduce some of their properties. Let

R be the set of all sequences defined on R U (8), where R is

the set of real numbers, and 8 is a special element called the

don't care element.

1) 8-regular, element-wise operators: Any binary operator lop'

defined on R may be extended to R8 by applying it, element wise

- to elements of sequences, with 8 being the result of any opera-

tion involving 8. More specifically,

8 if t(t)- or (t)='-
.[ 'op' 71(t) = (t) 'op 71(t) otherwiser --

2) The shift operator; r R R8, is defined by

x if t " r
xr C)(t)r-if t > r

More descriptively, if r is positive, then 0r inserts r elements,
x

- each equal to x, at the beginning of its operand. For example,

if

1 z 2 z3 ' ... (29)

2 rthen, C - x,x,z1 ,z2 ? .... Note that nx may be used to model a

cell which maintains x on its output for r time units, and delays

its input by r units. For simplicity, we omit r if it is unity,

and x if it is 8.

On the other hand, if r is negative, then nr trims the first

r elements of its operand. For example, with C of (29), n-2 C -,

'I A, . J
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z3 ,z, V .... Note that n -r may be used as an inverse to nr. More

specifically, n- r nf r - C. However, the converse is not always

true, that is 0r fn- C = only if the first r elements of C are
' 'X

equal to x.

3) The spread operator; es : R R is defined as follows:

jC((t+s)-(s+l)) t=l,s+2,2s+3,...,(i-l)s+i,...
[ s C](t) *8 otherwise

In other words, 9s inserts s don't care elements between Succes-

sive elements of its operand. With C of (29), we have

*C= z1 8,8, z2 ,8,6, z3 ....

w..wn n -

4) The Multiplexing operator: Mw l ' [ '  [-R6  R6, is definedr,[x] ;[R Rsdeid

12I to model a multiplexer that has n inputs. It starts operation at

time r (1 if r is omitted), and, periodically, samples its inputs

with the ratio w .:w n . The output for the first r-I time

units is set to x (6 if x is omitted). More specifically, if

K=w +...+w n is the multiplexing period, then
n

M- x if t<r[M~~l :.:wn {-
r,(xJ (Ul '''''. n) ] (t )  (t) if t?-r

where e is the largest integer between 1 and n such that the

remainder of (t-r)+K is less than w1 +...+we. For example, with C

as in (29), and

- P. Y2 ' Y3 . ."(30 )

we have M2, I (C,7) -- x,z2,z3 ,y4,z5 ,z6 ,y7,.... Note that if w ,
2,[x] 2'3y,5z,7. nuo

then Mwl,.. ,wn may be used to model an n-phase cell, where each

phase el,...,n-i executes for w time units, and the last phase

executes from time r+w L+... +Wn_ until infinity.
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5) The piping operator: P,... n) k R] - Ro' concatenates

the first k elements of its operands ,...,fn, into one long

*.. sequence. Por example if C and n are as in (29) and (30),

respectively, then

3
P 2('W)= z11z 2 z 3,yly 2,y3 r,8 6....

,. For simplicity, we write Pk(l, ) as P (e)
n In e l,nfe)

The following properties, may be directly verified from the

definitions of the sequence operators:

Property Pl: e nx x no e-

Property P2:

.O r .wl, wn wl,. ,wno r ..

."x M1 "'w( '''n) r+l,4x] X x n
Property P3: If 'op' is an element-wise operation, then

.r [C 'op' 1] = nr C lop: n ,

e. (C 'op' 71 = eSC 'op' e

:}V

ha
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